CC

Official PL-300 Exam Guide

Exam Format, Domains & Preparation Tips

PL-300: Microsoft Power BI Data Analyst Study Guide

Exam Overview

  • Certification: Microsoft Power BI Data Analyst Associate
  • Exam Code: PL-300
  • Target Audience: Data analysts delivering insights with Power BI
  • Experience Required: Proficiency with Power Query and DAX

Skills Measured (as of April 21, 2025)

1. Prepare the Data (25-30%)

Get or Connect to Data

  • Identify and connect to data sources or shared semantic models
  • Change data source settings (credentials, privacy levels)
  • Choose between DirectQuery and Import
  • Create and modify parameters

Profile and Clean the Data

  • Evaluate data (statistics, column properties)
  • Resolve inconsistencies, unexpected or null values
  • Resolve data quality issues
  • Resolve data import errors

Transform and Load the Data

  • Select appropriate column data types
  • Create and transform columns
  • Group and aggregate rows
  • Pivot, unpivot, and transpose data
  • Convert semi-structured data to tables
  • Create fact and dimension tables
  • Identify and create keys for relationships
  • Configure data loading for queries

2. Model the Data (25-30%)

Design and Implement a Data Model

  • Configure table and column properties
  • Implement role-playing dimensions
  • Define relationship cardinality and cross-filter direction
  • Create common date table
  • Identify use cases for calculated columns and tables

Create Model Calculations Using DAX

  • Create single aggregation measures
  • Use CALCULATE function
  • Implement time intelligence measures
  • Use basic statistical functions
  • Create semi-additive measures
  • Create measures using quick measures
  • Create calculated tables or columns
  • Create calculation groups

Optimize Model Performance

  • Improve performance by removing unnecessary rows/columns
  • Identify poorly performing measures, relationships, and visuals
  • Use Performance Analyzer and DAX query view
  • Improve performance by reducing granularity

3. Visualize and Analyze the Data (25-30%)

Create Reports

  • Select appropriate visuals
  • Format and configure visuals
  • Apply and customize themes
  • Apply conditional formatting
  • Apply slicing and filtering
  • Configure report page
  • Choose when to use paginated reports

Create Visual Calculations Using DAX

  • Implement visual-level calculations
  • Use visual calculation functions
  • Optimize visual calculations

Enhance Reports for Usability and Storytelling

  • Configure bookmarks
  • Create custom tooltips
  • Edit and configure visual interactions
  • Configure report navigation
  • Apply sorting to visuals
  • Configure sync slicers
  • Group and layer visuals using Selection pane
  • Configure drill through navigation
  • Configure export settings
  • Design reports for mobile devices
  • Enable personalized visuals
  • Design for accessibility
  • Configure automatic page refresh

Identify Patterns and Trends

  • Use Analyze feature in Power BI
  • Use grouping, binning, and clustering
  • Use AI visuals
  • Use reference lines, error bars, and forecasting
  • Detect outliers and anomalies

4. Manage and Secure Power BI (15-20%)

Create and Manage Workspaces and Assets

  • Create and configure workspaces
  • Configure and update workspace apps
  • Publish, import, or update items in workspace
  • Create dashboards
  • Choose distribution methods
  • Configure subscriptions and data alerts
  • Promote or certify Power BI content
  • Identify when gateway is required
  • Configure semantic model scheduled refresh

Secure and Govern Power BI Items

  • Assign workspace roles
  • Configure item-level access
  • Configure access to semantic models
  • Implement row-level security roles
  • Configure row-level security group membership
  • Apply sensitivity labels

Key Power BI Components

Power Query

  • M Language: Transformation language
  • Query Editor: Data transformation interface
  • Data Sources: 100+ connectors
  • Applied Steps: Transformation tracking

Data Modeling

  • Star Schema: Fact and dimension tables
  • Relationships: One-to-many, many-to-many
  • Hierarchies: Drill-down capabilities
  • Calculation Groups: Reusable calculations

DAX (Data Analysis Expressions)

  • Calculated Columns: Row context
  • Measures: Dynamic calculations
  • Tables: Generated tables
  • Variables: Improve readability and performance

Visualizations

  • Standard Visuals: Bar, line, pie, table, matrix
  • AI Visuals: Key influencers, decomposition tree, Q&A
  • Custom Visuals: AppSource marketplace
  • R/Python Visuals: Advanced analytics

Important DAX Functions

Aggregation Functions

SUM, AVERAGE, MIN, MAX, COUNT, DISTINCTCOUNT
SUMX, AVERAGEX (iterators)

Filter Functions

CALCULATE - Change filter context
FILTER - Table filtering
ALL - Remove filters
ALLEXCEPT - Remove all except specified
REMOVEFILTERS - Clear filters

Time Intelligence

DATEADD, DATESYTD, TOTALYTD
SAMEPERIODLASTYEAR
PARALLELPERIOD
PREVIOUSMONTH, PREVIOUSQUARTER

Logical Functions

IF, SWITCH
AND, OR, NOT
ISBLANK, ISEMPTY
IFERROR

Text Functions

CONCATENATE, CONCATENATEX
FORMAT
LEFT, RIGHT, MID
UPPER, LOWER

Table Functions

VALUES, DISTINCT
SUMMARIZE, SUMMARIZECOLUMNS
CROSSJOIN, GENERATE
UNION, INTERSECT, EXCEPT

Data Connectivity

Import Mode

  • Data stored in memory
  • Best performance
  • Scheduled refresh
  • Size limitations (1GB/dataset)

DirectQuery

  • Real-time data
  • No data storage
  • Performance depends on source
  • Limited DAX functions

Composite Models

  • Mix Import and DirectQuery
  • Aggregations for performance
  • Flexibility in design

Live Connection

  • Connect to Analysis Services
  • Connect to Power BI datasets
  • No local modeling

Security Features

Row-Level Security (RLS)

  • Filter data at row level
  • Dynamic security with USERNAME()
  • Static roles
  • Test with "View as Role"

Object-Level Security (OLS)

  • Hide tables and columns
  • Restrict access to sensitive data
  • Requires Premium capacity

Workspace Roles

  • Admin: Full control
  • Member: Edit content
  • Contributor: Create content
  • Viewer: Read-only access

Performance Optimization

Data Model Optimization

  • Remove unnecessary columns
  • Optimize data types
  • Reduce cardinality
  • Avoid bi-directional filtering
  • Use aggregations

DAX Optimization

  • Use variables
  • Avoid FILTER in CALCULATE
  • Minimize use of iterators
  • Avoid calculated columns when possible
  • Use DIVIDE instead of division operator

Visual Optimization

  • Limit visuals per page
  • Reduce cross-filtering
  • Use aggregations
  • Optimize custom visuals
  • Consider report page filters

Best Practices

Data Preparation

  • Clean data at source when possible
  • Use query folding
  • Document transformations
  • Create reusable functions
  • Implement incremental refresh

Data Modeling

  • Follow star schema design
  • Create date table
  • Hide unnecessary fields
  • Use consistent naming
  • Document model design

Report Design

  • Keep it simple
  • Use consistent formatting
  • Design for your audience
  • Test on target devices
  • Include context and titles

Governance

  • Implement naming conventions
  • Document data sources
  • Version control reports
  • Regular security reviews
  • Monitor usage metrics

Power BI Service Features

Workspace Management

  • Apps for distribution
  • Deployment pipelines
  • Dataflows for ETL
  • Shared datasets
  • Lineage view

Sharing and Collaboration

  • Share reports and dashboards
  • Embed in Teams/SharePoint
  • Email subscriptions
  • Comments and annotations
  • Export capabilities

Administration

  • Admin portal settings
  • Usage metrics
  • Audit logs
  • Capacity management
  • Tenant settings

Study Resources

Official Microsoft Learn

  • PL-300 learning paths
  • Power BI documentation
  • Power BI guided learning
  • Practice assessments

Hands-On Practice

  • Power BI Desktop (free)
  • Power BI service trial
  • Sample datasets
  • AdventureWorks database

Community Resources

  • Power BI Community forums
  • Power Query forums
  • Guy in a Cube YouTube
  • SQLBI articles and videos

Exam Details

  • Passing Score: 700
  • Question Format: Multiple choice, case studies, drag-and-drop
  • Exam Duration: 100 minutes (130 minutes for non-native English speakers)
  • Languages Available: Multiple languages
  • Exam Cost: $165 USD (varies by region)

Certification Path

  • Prerequisites: None required, but data analysis experience recommended
  • Renewal: Required every 12 months through Microsoft Learn
  • Related Certifications:
    • Power Platform Fundamentals (PL-900)
    • Power Platform Developer (PL-400)
    • Azure Data Engineer (DP-203/DP-600)